Package: wrProteo 1.13.0

wrProteo: Proteomics Data Analysis Functions

Data analysis of proteomics experiments by mass spectrometry is supported by this collection of functions mostly dedicated to the analysis of (bottom-up) quantitative (XIC) data. Fasta-formatted proteomes (eg from UniProt Consortium <doi:10.1093/nar/gky1049>) can be read with automatic parsing and multiple annotation types (like species origin, abbreviated gene names, etc) extracted. Initial results from multiple software for protein (and peptide) quantitation can be imported (to a common format): MaxQuant (Tyanova et al 2016 <doi:10.1038/nprot.2016.136>), Dia-NN (Demichev et al 2020 <doi:10.1038/s41592-019-0638-x>), Fragpipe (da Veiga et al 2020 <doi:10.1038/s41592-020-0912-y>), ionbot (Degroeve et al 2021 <doi:10.1101/2021.07.02.450686>), MassChroq (Valot et al 2011 <doi:10.1002/pmic.201100120>), OpenMS (Strauss et al 2021 <doi:10.1038/nmeth.3959>), ProteomeDiscoverer (Orsburn 2021 <doi:10.3390/proteomes9010015>), Proline (Bouyssie et al 2020 <doi:10.1093/bioinformatics/btaa118>), AlphaPept (preprint Strauss et al <doi:10.1101/2021.07.23.453379>) and Wombat-P (Bouyssie et al 2023 <doi:10.1021/acs.jproteome.3c00636>. Meta-data provided by initial analysis software and/or in sdrf format can be integrated to the analysis. Quantitative proteomics measurements frequently contain multiple NA values, due to physical absence of given peptides in some samples, limitations in sensitivity or other reasons. Help is provided to inspect the data graphically to investigate the nature of NA-values via their respective replicate measurements and to help/confirm the choice of NA-replacement algorithms. Meta-data in sdrf-format (Perez-Riverol et al 2020 <doi:10.1021/acs.jproteome.0c00376>) or similar tabular formats can be imported and included. Missing values can be inspected and imputed based on the concept of NA-neighbours or other methods. Dedicated filtering and statistical testing using the framework of package 'limma' <doi:10.18129/B9.bioc.limma> can be run, enhanced by multiple rounds of NA-replacements to provide robustness towards rare stochastic events. Multi-species samples, as frequently used in benchmark-tests (eg Navarro et al 2016 <doi:10.1038/nbt.3685>, Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>), can be run with special options considering such sub-groups during normalization and testing. Subsequently, ROC curves (Hand and Till 2001 <doi:10.1023/A:1010920819831>) can be constructed to compare multiple analysis approaches. As detailed example the data-set from Ramus et al 2016 <doi:10.1016/j.jprot.2015.11.011>) quantified by MaxQuant, ProteomeDiscoverer, and Proline is provided with a detailed analysis of heterologous spike-in proteins.

Authors:Wolfgang Raffelsberger [aut, cre]

wrProteo_1.13.0.tar.gz
wrProteo_1.13.0.zip(r-4.5)wrProteo_1.13.0.zip(r-4.4)wrProteo_1.13.0.zip(r-4.3)
wrProteo_1.13.0.tgz(r-4.4-any)wrProteo_1.13.0.tgz(r-4.3-any)
wrProteo_1.13.0.tar.gz(r-4.5-noble)wrProteo_1.13.0.tar.gz(r-4.4-noble)
wrProteo_1.13.0.tgz(r-4.4-emscripten)wrProteo_1.13.0.tgz(r-4.3-emscripten)
wrProteo.pdf |wrProteo.html
wrProteo/json (API)

# Install 'wrProteo' in R:
install.packages('wrProteo', repos = c('https://wraff.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.63 score 1 packages 18 scripts 1.3k downloads 57 exports 9 dependencies

Last updated 5 days agofrom:e70372d4a1. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winOKNov 19 2024
R-4.5-linuxOKNov 19 2024
R-4.4-winOKNov 19 2024
R-4.4-macOKNov 19 2024
R-4.3-winOKNov 19 2024
R-4.3-macOKNov 19 2024

Exports:.atomicMasses.checkKnitrProt.checkSetupGroups.commonSpecies.extrSpecPref.imputeNA.plotQuantDistrAAmassAucROCcleanListCoNamescombineMultFilterNAimputconvAASeq2masscorColumnOrdercountNoOfCommonPeptidesexportAsWombatPexportSdrfDraftextractTestingResultsextrSpeciesAnnotfoldChangeArrow2fuseProteomicsProjectsgetUPS1accinspectSpeciesIndicisolNAneighbmassDeFormulamatrixNAinspectmatrixNAneighbourImputeplotROCrazorNoFilterreadAlphaPeptFilereadDiaNNFilereadDiaNNPeptidesreadFasta2readFragpipeFilereadIonbotPeptidesreadMassChroQFilereadMaxQuantFilereadMaxQuantPeptidesreadOpenMSFilereadProlineFilereadProtDiscovererPeptidesreadProtDiscovFilereadProtDiscovPeptidesreadProteomeDiscovererFilereadProteomeDiscovererPeptidesreadSampleMetaDatareadSdrfreadUCSCtablereadUniProtExportreadWombatNormFileremoveSampleInListreplMissingProtNamesshortSoftwNamesummarizeForROCtest2grptestRobustToNAimputationVolcanoPlotW2writeFasta2

Dependencies:evaluatehighrknitrlimmaMASSstatmodwrMiscxfunyaml

Analyzing Proteomics UPS1 Spike-in Experiments (Example Ramus 2016 Dataset)

Rendered fromwrProteoVignetteUPS1.Rmdusingknitr::rmarkdownon Nov 19 2024.

Last update: 2024-11-18
Started: 2020-10-18

Getting started with wrProteo

Rendered fromwrProteoVignette1.Rmdusingknitr::rmarkdownon Nov 19 2024.

Last update: 2024-11-18
Started: 2020-04-29

Readme and manuals

Help Manual

Help pageTopics
Molecular mass for Elements.atomicMasses
Checking presence of knitr and rmarkdown.checkKnitrProt
Additional/final Check And Adjustments To Sample-order After readSampleMetaData().checkSetupGroups
Get Matrix With UniProt Abbreviations For Selected Species As Well As Simple Names.commonSpecies
Extract Additional Information To Construct The Colum 'SpecType'.extrSpecPref
Basic NA-imputaton (main).imputeNA
Generic Plotting Of Density Distribution For Quantitation Import-functions.plotQuantDistr
Molecular mass for amino-acidsAAmass
AUC from ROC-curvesAucROC
Selective batch cleaning of sample- (ie column-) names in listcleanListCoNames
Combine Multiple Filters On NA-imputed DatacombineMultFilterNAimput
Molecular mass for amino-acidsconvAASeq2mass
Order Columns In List Of Matrixes, Data.frames And VectorscorColumnOrder
Compare in-silico digested proteomes for unique and shared peptides, counts per protein or as peptides Compare in-silico digested proteomes for unique and shared peptides, counts per protein or as peptides. The in-silico digestion may be performed separately using the package cleaver. Note: input must be list (or multiple names lists) of proteins with their respective peptides (eg by in-silico digestion).countNoOfCommonPeptides
Export As Wombat-P Set Of FilesexportAsWombatP
Export Sample Meta-data from Quantification-Software as Sdrf-draftexportSdrfDraft
Extract Results From Moderated t-testsextractTestingResults
Extract species annotationextrSpeciesAnnot
Add arrow for expected Fold-Change to VolcanoPlot or MA-plotfoldChangeArrow2
Combine Multiple Proteomics Data-SetsfuseProteomicsProjects
Accession-Numbers And Names Of UPS1 ProteinsgetUPS1acc
Inspect Species Indictaion Or Group of ProteinsinspectSpeciesIndic
Isolate NA-neighboursisolNAneighb
Molecular mass from chemical formulamassDeFormula
Histogram of content of NAs in matrixmatrixNAinspect
Imputation of NA-values based on non-NA replicatesmatrixNAneighbourImpute
Plot ROC curvesplotROC
Filter based on either number of total peptides and specific peptides or number of razor petidesrazorNoFilter
Read (Normalized) Quantitation Data Files Produced By AlphaPeptreadAlphaPeptFile
Read Tabulated Files Exported by DIA-NN At Protein LevelreadDiaNNFile
Read Tabulated Files Exported by DiaNN At Peptide LevelreadDiaNNPeptides
Read File Of Protein Sequences In Fasta FormatreadFasta2
Read Tabulated Files Exported by FragPipe At Protein LevelreadFragpipeFile
Read Tabulated Files Exported by Ionbot At Peptide LevelreadIonbotPeptides
Read tabulated files imported from MassChroQreadMassChroQFile
Read Quantitation Data-Files (proteinGroups.txt) Produced From MaxQuant At Protein LevelreadMaxQuantFile
Read Peptide Identification and Quantitation Data-Files (peptides.txt) Produced By MaxQuantreadMaxQuantPeptides
Read csv files exported by OpenMSreadOpenMSFile
Read xlsx, csv or tsv files exported from Proline and MS-AngelreadProlineFile
readProtDiscovererPeptides, depreciatedreadProtDiscovererPeptides
Read Tabulated Files Exported By ProteomeDiscoverer At Protein Level, DeprecatedreadProtDiscovFile
Read Tabulated Files Exported by ProteomeDiscoverer At Peptide Level, DeprecatedreadProtDiscovPeptides
Read Tabulated Files Exported By ProteomeDiscoverer At Protein LevelreadProteomeDiscovererFile
Read Tabulated Files Exported by ProteomeDiscoverer At Peptide LevelreadProteomeDiscovererPeptides
Read Sample Meta-data from Quantification-Software And/Or Sdrf And Align To Experimental DatareadSampleMetaData
Read proteomics meta-data as sdrf filereadSdrf
Read annotation files from UCSCreadUCSCtable
Read protein annotation as exported from UniProt batch-conversionreadUniProtExport
Read (Normalized) Quantitation Data Files Produced By Wombat At Protein LevelreadWombatNormFile
Remove Samples/Columns From list of matrixesremoveSampleInList
Complement Missing EntryNames In AnnotationreplMissingProtNames
Get Short Names of Proteomics Quantitation SoftwareshortSoftwName
Summarize statistical test result for plotting ROC-curvessummarizeForROC
t-test each line of 2 groups of datatest2grp
Pair-wise testing robust to NA-imputationtestRobustToNAimputation
Deprecialed Volcano-plotVolcanoPlotW2
Write sequences in fasta format to file This function writes sequences from character vector as fasta formatted file (from UniProt) Line-headers are based on names of elements of input vector 'prot'. This function also allows comparing the main vector of sequences with a reference vector 'ref' to check if any of the sequences therein are truncated.writeFasta2